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Abstract

Skin cancer is a fatal disease that impacts one million Australians every year. Due

to the inherent difficulty of accurately diagnosing skin lesions, and the critical

importance of early treatment, the purpose of this report is to review the literature on

machine learning enhanced diagnostics of cutaneous neoplasms. Initial research

found that convolutional neural networks produce the most accurate image

classification models, which led to further investigation into the binary classification

models developed with the AlexNet, ResNet, and VGGNet architectures that were

employed in various skin cancer detection projects. Further, with the problem of

distinguishing not only benign from malignant naevi but also melanocytic and

non-melanocytic skin cancers, additional research into the multiclass classification

model implemented with EfficientNet was also performed. Subsequent findings

reveal that SoftMax and Support Vector Machine (SVM) image classification functions

were favoured, and consistently produced models testing above 90% accuracy.

Interestingly, these results were irrespective of the dataset size. In addition, an

on-device inference application was reviewed, which highlighted both the challenges

and prospects of bringing this technology to mobile devices. As a final point, we

propose a detailed plan to design and develop a VGGNet convolutional neural

network to classify images of skin lesions from the PH2 and/or HAM10000 datasets

using a SoftMax and/or SVM classifier; with the secondary objective of researching

the viability of adapting this technology to mobile devices.
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Introduction

According to the Australian Institute of Health and Welfare (2016), Australia has

the highest rate of skin cancer in the world, with approximately one million cases

diagnosed each year. Consequently, as the most common form of cancer in Australia,

two-thirds of the population will receive a positive diagnosis by the age of seventy.

However, although malignant melanoma is the most aggressive, there are several

more common types such as squamous and basal cell carcinoma that are much more

responsive to treatment if identified early (Australian Institute of Health and Welfare,

2016). For this reason, this report will present findings from a comprehensive review

of the machine learning literature insofar as it pertains to the image classification of

cutaneous neoplasms and its diagnostic application.

Initially, skin cancers are primarily identified via a visual diagnosis before being

confirmed with a histological examination; however, this method is not trivial and is

susceptible to irreproducible results (Adegun & Viriri, 2020, p. 7160; Yu et al., 2017,

238–239). Because of this, there has been extensive research in developing intelligent

systems to enhance the dermoscopic diagnosis of skin lesions, which allows for

myriad improvements such as, inter alia, increased screening rates (Yap et al., 2018,

p. 1261), and reduced healthcare costs (Fisher et al., 2020, p. 87). Further, more recently,

given the ubiquity of smartphones that can provide high definition photographic

images, research into developing automated classification using images that can be

taken by anyone, anywhere has yielded promising results (Dai et al., 2019).

Subsequently, given the nature of this problem, which in sum and substance involves

discerning a category of skin lesion from a given image, the large body of research is

invariably comprised of the machine learning type known as supervised learning; in

particular, using convolutional neural networks—considered most optimal for the

given task (Naeem et al., 2020, p. 110575). Accordingly, the focus of this report is

primarily on this approach, and will explicate various binary and multiclass

classification techniques that fall under this category.

First, the approaches reviewed in this report will be classified to provide a

taxonomical overview of the subset of machine learning that is pertinent to the

problem of image classification. Second, through a comprehensive albeit concise

review of multiple works, a description of different convolutional neural networks
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used to enhance dermoscopic skin cancer diagnostics by classifying images of skin

lesions will be presented. Next, a comparison of the performance and results of these

approaches will be discussed and viewed through the lens of challenges and

corresponding implications with an eye toward future research. Lastly, before

considering inherent limitations and potential improvements, the denouement will

summarise the findings of this review and highlight future prospects.

Classification

Machine learning is a type of artificial intelligence, typically further divided into

three main types (Table 1): supervised learning; unsupervised learning; and

reinforcement learning. In the supervised approach, the system receives a set of

paired values {(xi, yi)}—typically called the training set—and learns a mapping from

input x to output y (Negnevitsky, 2011, p. 427). The result of this mapping function

enables the model to generalise to previously unseen examples, thereby producing a

categorical response, known as classification or pattern recognition (Murphy, 2012,

p. 2).

Table 1

Machine Learning Types

Type Description

Supervised
Supervised learning algorithms experience a dataset where each
data point is associated with a label; by observing these associations
the model learns to predict y from x by estimating p(y | x).

Unsupervised

Unsupervised learning algorithms experience a dataset that contains
myriad features, and identifies interesting properties of its structure
by observing multiple data points of a random vector x and learning
the probability distribution p(x).

Reinforcement
Reinforcement learning algorithms interact with a dataset, creating
a feedback loop between the system and its experiences, and discov-
ering actions that yield the best reward through experimentation.

Note. Adapted from Deep Learning (pp. 102–103), by I. Goodfellow, Y. Bengio, and A Courville,
2016, The MIT Press. Copyright 2013 by Massachusetts Institute of Technology.

For this reason, we aver that supervised learning is most applicable to the problem

of diagnosing cutaneous neoplasms. By training a model on a dataset of skin lesions,

M. Jamsek, J. Soto-Kitcher, & J. Knox 5



CSG2341: Intelligent Systems Proposal Report

the intelligent system will estimate a function that is capable of outputting predictions

on novel images; that is, the model will learn how to generalise beyond the training

set to classify new images of skin lesions. This position is supported by Kaymak et al.

(2018, p. 2), who state that, "[c]onvolution neural networks are among the strongest

methods in deep learning which are used for detection, classification and

segmentation of melanoma." However, there are various types of classification, which

can be categorised as follows: binary classification, which has a single target variable

t ∈ {0, 1} such that t = 1 denotes class C1 and t = 0 denotes class C2; multiclass

classification where each input maps to one of K mutually exclusive classes where

target variables tk ∈ {0, 1} have a 1-of-K encoding designating the class; and

multilabel classification where each input instance x is mapped to vector y, such that

yi ∈ {0, 1}, to assign multiple classifications per output (Bishop, 2006). Accordingly,

given the fundamental problem of establishing whether a particular skin lesion is

either benign or malignant, this review will focus on several binary classification

techniques. However, due to there being several types of skin cancer—melanoma, and

squamous and basal cell carcinoma—the multiclass classification model will also be

reviewed. In addition, with the secondary objective of ascertaining the viability of

using mobile devices to assist in skin cancer detection, an explication of an on-device

inference application (app) will conclude the reviewed approaches, which have been

classified and presented in Table 2 along with several more common binary and

multiclass classification algorithms.

Table 2

Classification Types

Binary Multiclass

AlexNet (ECOC SVM) EfficientNet (Bayesian)
ResNet (SVM) On-device (SoftMax)

VGGNet (SoftMax) K-Nearest Neighbours
Decision Forest Naive Bayes

Note. Reviewed approaches displayed with architecture and classifier denoted as A (B).

Therefore, in the following section, a description of the CNN is provided, together

with reviews of binary classification models developed with the AlexNet, ResNet, and

VGGNet architectures that were used in various skin cancer detection projects.
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Further, to provide contrast, multiclass classification models developed with the

EfficientNet architecture and an on-device inference app have also been reviewed.

Approaches

Various network architectures have been used to implement a supervised learning,

intelligent system that classifies images of skin lesions as a malignant neoplasm

diagnostician with accuracy rates comparable to that of the human eye (Table 3).

Table 3

Comparison of skin cancer detection projects

Study Dataset Layers Architecture Classifier Ac Se Sp

Attia et al., 2017
ISBI 2016 1,275

(900/375)
14

CNN/RNN
Hybrid

- 98 95 94

Dorj et al., 2018
3,753

(2985/768)
12 AlexNet ECOC SVM 94 98 91

Ge et al., 2017
MoleMap

26,584
41 & 22

VGG-16 &
GoogleNet

Novel -
SoleNet,

ShareNet &
TripleNet

97 - -

Yu et al., 2017
ISBI 2016 1,279

(900/379)
50 ResNet-50

SVM
(Chi-squared

kernel)
87 43 98

Yap et al., 2018 2,917 41 × 2
2 × ResNet-50

+ fusion
SoftMax 72 - -

Alom et al., 2019
Kaggle 1,279

(900/379)
34

RU-Net &
R2U-Net

SoftMax 95 92 95

Kumar et al., 2019 PH2 100 9 SWT SVM 93 92 90

Yan et al., 2019
ISIC 2016 &

2017 379
41 VGG-16 SoftMax - - -

Swain et al., 2020
1,630

(1400/230)
4 CNN SoftMax 93 - -

Note. Where available, the Dataset column lists collection name with training and testing subsets
denoted as (x/y), otherwise only total images experienced are shown. Ac = accuracy; Se =
sensitivity; and Sp = specificity, with values in %.

Interestingly, the literature indicates no predominant network architecture, while

some skin cancer detection projects use an ensemble. Conversely, in recent years,
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Support Vector Machine (SVM) and SoftMax classification algorithms have been

favoured (Attia et al., 2017; Ge et al., 2017; Yap et al., 2018). The varied results of these

approaches can be attributed to different architectures, layer depths, classification

algorithms, and datasets. A direct comparison between AlexNet, VGG-16 and

ResNet-50 network architectures using sensitivity (Sen), specificity (Spec), mean

average precision (MAP), accuracy (Acc), and area under receive operation curve

(AUC) metrics have been documented in Table 4.

Table 4

Impact of network architectures on skin lesion classification results

Network Parameter Layer Sen Spec mAP Acc AUC Time

AlexNet 61 M Conv5 40.00 95.72 61.37 84.70 82.08 0.94 s
VGG-16 138 M Conv5_3 45.33 94.08 57.66 84.43 81.18 2.72 s
ResNet-50 25.6 M Conv5_9 45.33 96.71 65.08 86.54 81.49 1.33 s

Note. All values in % unless otherwise noted. Adapted from ‘Aggregating Deep Convolutional
Features for Melanoma Recognition in Dermoscopy Images’ by Z. Yu, X. Jiang, T. Wang, & B.
Lei in Q. Wang, Y. Shi, H.I. Suk, & K. Suzuki (Eds), Machine Learning in Medical Imaging: Lecture
Notes in Computer Science (p. 244), 2017, Springer. Copyright 2017 by Springer International
Publishing AG.

Convolutional Neural Network

According to Patterson and Gibson (2017, pp. 125–126), convolutional neural

networks (CNNs) are remarkably successful in computer vision. This makes CNN

models ideal in the nascent field of image classification for medical diagnosis. For this

reason, the CNN approach will be elucidated, with different architectures and

classifiers described, to present a clear and concise analysis of this highly effective

artificial intelligence technique.

Dorj et al. (2018, p. 9911) explain that the CNN is comprised of three distinct layers:

convolutional; pooling; and fully connected. The convolutional layer is the primary

component, although the three work in concert to produce a synergistic effect; that is,

the first two perform feature extraction, while the fully connected are classification

layers (Patterson & Gibson, 2017, pp. 128–129). In addition, the convolutional layer

has three configurable hyperparameters—depth, stride, and padding—that optimise

performance by controlling its output volume with the formula
W − K + 2P

S
+ 1
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where W is the size of the input neuron, K is the size of the filter, P is the padding size,

and S is the stride length (Dorj et al., 2018, p. 9913). However, in the case of

diagnosing skin lesions where the input is a multidimensional array of image data,

convolution involves a linear operation of input matrices (MA, NA) such that

C(i, j) = ∑
(MA−1)
m=0 ∑

(NA−1)
n=0 A(m, n)B(i−m, j− n) where 0 ≤ i < MA + MB − 1 and

0 ≤ j < NA + NB − 1 (Dorj et al., 2018, p. 9913). More specifically, the filter is applied

to the input to extract pertinent features. First, the depth value sets how many filters

are to be applied, which invariably corresponds to the number of channels in the

input image; for example, an RGB colour image will necessitate three filters—one for

each channel (Patterson & Gibson, 2017, pp. 128, 138; Dorj et al., 2018, p. 9912). Next,

Patterson and Gibson (2017, p. 139) explain, the stride parameter determines how

many pixels the filter will traverse before performing another calculation on the input

matrix, with the stride and output size inversely related. Lastly, padding controls the

spatial size of the image by effectively encompassing the input with additional layers

to both preserve information of corner and edge pixels and allow more convolutions

thereby enabling deeper networks (Patterson & Gibson, 2017, p. 299). The output of

the convolution layer—C(i, j)—is the feature map that is then passed into the pooling

layer, which effectively reduces spatial dimensionality to lessen computational

demands and mitigate the risk of overfitting (Patterson & Gibson, 2017, p. 140). Most

commonly, average- and max-pooling reduction methods are employed to define

mean and peak values, respectively, in its data-reducing calculations; the results of

which are input into the fully connected layer, which then classifies the image

(Patterson & Gibson, 2017, pp. 128–129).

In the following sections, the binary classification models AlexNet, ResNet and

VGGNet will be reviewed before multiclass classification models EfficientNet, and a

novel on-device CNN inference app, are explored in more detail to provide a contrast

of these popular convolutional neural networks.

Binary Classification

AlexNet

AlexNet is a large, deep convolutional neural network that won the ImageNet

Large-Scale Visual Recognition Challenge (ILSVRC) in 2012 (Khan et al., 2018). The

M. Jamsek, J. Soto-Kitcher, & J. Knox 9
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network is comprised of eight parameter layers including five convolutional layers

and three fully connected layers and implements dropout techniques to reduce

overfitting (Figure 1). According to Krizhevsky et al. (2017, p. 88), AlexNet models

learned best with a minimal weight decay of 0.0005, momentum of 0.9, and an

adaptive learning rate initialised to 0.01 that would decrease gradually over three

adjustments, using the error updating formula:

vi+1 := 0.9 · vi − 0.0005 · ε · wi − ε ·
〈

∂L
∂w
|wi

〉
Di

,

wi+1 := wi + vi+1 ,

where i is the current iteration, v is momentum, and ε the learning rate, which was

consistently applied across all layers.

AlexNet has been used on various skin cancer detection projects as well as being

used in an ensemble of network architectures with comparable accuracy rates ranging

from 87% to 94% (Dorj et al., 2018; Harangi et al., 2018; Yu et al., 2017).

Figure 1

Rendition of convolutional layers

Note. From "A Guide to Convolutional Neural Networks for Computer Vis-
ion" by S. Khan, H. Rahmani, S. Shah, & M. Bennamoun, 2018, p. 103 (ht-
tps://doi.org/10.2200/S00822ED1V01Y201712COV015). Copyright 2018 by Morgan &
Claypool Publishers.

ResNet

A Residual Neural Network (ResNet), comprised of stacked residual blocks

(Figure 2) with similarities to an inception model used by GoogleNet, was developed
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by Microsoft Research and won the ILSVRC in 2015 with a top-5 error rate of 3.57%

after experiencing an ImageNet dataset using a depth of up to 152 layers (Khan et al.,

2018). Meanwhile, He et al. (2019) report that the network enables easier training of

deep CNN architectures due to an identity mapping feature that skips identity

connections in the residual blocks. Similar to AlexNet, ResNet has been used in

various skin cancer detection projects (Alom et al., 2019; Yap et al., 2018; Yu et al.,

2017).

Figure 2

The Residual Block

Note. From "A Guide to Convolutional Neural Networks for Computer Vis-
ion" by S. Khan, H. Rahmani, S. Shah, & M. Bennamoun, 2018, p. 109 (ht-
tps://doi.org/10.2200/S00822ED1V01Y201712COV015). Copyright 2018 by Morgan &
Claypool Publishers.

VGGNet

According to Khan et al. (2018, p. 104), an important feature of the VGGNet

architecture is its smaller filters. This facilitates more layers, which enables deeper

networks, and results in improved performance on vision tasks—an important

advantage in image classification. Similarly, the use of smaller kernels can result in a
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reduced number of parameters, which improves efficiency in training and testing

(Khan et al., 2018). In addition, VGGNet uses activation dropouts in the fully

connected layers to reduce over-fitting (Khan et al., 2018). Topologically, the network

is comprised of 3x3 convolution kernels with each layer followed by a ReLU layer,

max-pooling layers, and three fully connected layers shown in Figure 3 (Khan et al.,

2018). These characteristics combined with its model simplicity make VGGNet a

popular choice for image classification.

Figure 3

The VGGNet-16 architecture

Note. From "A Guide to Convolutional Neural Networks for Computer Vis-
ion" by S. Khan, H. Rahmani, S. Shah, & M. Bennamoun, 2018, p. 104 (ht-
tps://doi.org/10.2200/S00822ED1V01Y201712COV015). Copyright 2018 by Morgan &
Claypool Publishers.

Multiclass Classification

On-Device Inference

Traditionally, machine learning applications are extremely computationally

intensive; hence, if a machine learning model was built to be used on a mobile device

(e.g., smartphone, tablet) it would be executed in the cloud. In contrast, Dai et al.

(2019) discuss an approach of using a CNN to be executed locally on a mobile device.

The objective of this approach is to create a classification system which can execute

almost instantly with limited computational power.

First, as shown in Figure 4, the architecture of the machine learning model has a

series of convolution and pooling layers that perform feature extraction. After this, the

outer layers flatten the data before the probability is calculated via a function in the

M. Jamsek, J. Soto-Kitcher, & J. Knox 12
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Figure 4

Architecture of Convolutional Neural Networks for Skin Cancer Detection

Note. From ‘Machine Learning on Mobile: An On-device Inference App for Skin Cancer Detec-
tion’ by X. Dai, I. Spasić, B. Meyer, S. Chapman, & F. Andres, 2019, Fourth International Confer-
ence on Fog and Mobile Edge Computing, p. 302. (https://doi.org/10.1109/FMEC.2019.8795362).
Copyright 2019 by IEEE.

connected layer. Dai et al. (2019, p. 303) report that the algorithms are implemented

with Python, TensorFlow, Scikit-learn, and Keras. The convolutional layers are used

for the machine learning algorithm to recognise and activate upon certain patterns

within the image. Whereas pooling, Dai et al. (2019, p. 303) explain, is used to reduce

the parameters and remove non-essential features to mitigate overfitting. In this case,

max-pooling is implemented using the MaxPool2D Python module (Dai et al., 2019,

p. 303).

The outer layer, which flattens the data, receives a multidimensional array from

the previous convolutional layer and converts it to a two-dimensional array. The

connected layer uses the SoftMax Function (Figure 5) to calculate the probabilities of

each type of malignant neoplasm and presents the most likely classification to the

end-user.

Figure 5

The SoftMax Function

σ(Z)j =
eZj

∑K
k=1 eZk

for j = 1, . . . , K

Note. Z = input vector; j = output units. From ‘Machine Learning on Mobile: An On-device
Inference App for Skin Cancer Detection’ by X. Dai, I. Spasić, B. Meyer, S. Chapman, & F.
Andres, 2019, Fourth International Conference on Fog and Mobile Edge Computing, p. 303. (ht-
tps://doi.org/10.1109/FMEC.2019.8795362). Copyright 2019 by IEEE.

Dai et al. (2019, p. 303) argue that to successfully implement the above model with

limited computational power, the input data had to be augmented to minimise the

number of input parameters. This was achieved by randomly performing cropping,
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rotating, shifting, or zooming with the image focal point remaining on the skin lesion.

After the model has been trained on a dataset on a powerful computer, the model

is stored on the mobile device. As a result, the user can take a picture of their skin

privately, and the algorithm is computed locally on the phone. However, if the model

is stored on an iOS app, there are additional steps that must be performed to be

integrated by Apple’s Core ML framework, which allows for more effective use of the

hardware (Dai et al., 2019, p. 304). Conversely, if on an Android device, the

TensorFlow model can be converted via TensorFlow Lite, which skips the conversion

process entirely.

EfficientNet

Putra et al. (2020, p. 40544) propose the idea of a Dynamics Pre-processing

Inference (DPI), which is a Bayesian optimisation method used to select an

augmentation policy for a machine learning model. It allows separate images in a

dataset to dynamically have an augmentation policy rather than having one statically

assigned for each image in each dataset.

Figure 6

DPI Model Implementation

Note. From ‘Enhanced Skin Condition Prediction Through Machine Learning Using Dynamic
Training and Testing Augmentation’ by T. A. Putra, S. I. Rufaida, & J-S Leu, 2020, IEEE Access,
p. 40541. (https://doi.org/10.1109/ACCESS.2020.2976045). Copyright 2020 by IEEE.

As shown in Figure 6, the image from the dataset goes through the DPI model to

find the augmentation policy for that specific image. Once the policy is found, the test
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image is modified based on the augmentation policy, and is used as an input to the

EfficientNet CNN (Putra et al., 2020, p. 40537). This model is used to find a probability

of a type of skin cancer based on an image of a skin lesion. Importantly, Putra et al.

(2020) note that this process of dynamically assigning an augmentation policy can

work with any CNN.

To achieve dynamic augmentation for inference, the following is defined as a

convolutional neural network function: Pϑ : χi− > Ψ. This function maps χi to the

augmentation space Ψ that contains all augmentations, which enables defining the

training objective shown in Figure 7.

Figure 7

Augmentation Function
min

ϑ
∑i ∑j zi,j × log(Pϑ,j(xi)),

Note. zi = top-k augmentation of the i-th dataset. From ‘Enhanced Skin Condition
Prediction Through Machine Learning Using Dynamic Training and Testing Augment-
ation’ by T. A. Putra, S. I. Rufaida, & J-S Leu, 2020, IEEE Access, p. 40540. (ht-
tps://doi.org/10.1109/ACCESS.2020.2976045). Copyright 2020 by IEEE.

Putra et al. (2020, p. 40540) explain that the index j (on zi,j) is a boolean value

identifying when the j-th augmentation is in the top-k, such that:

zi = topk(−`( fθ(Ψ(χi), yi)))

where ` is the loss function of the main machine learning model. Subsequently, the

task of finding the top-k is now a multilabel classification problem. The inference

augmentation model is then trained using xi and zi, which then finds which

augmentation works best for the selected input image. Once the network is trained

with the multilabel data on inference, the maximum logit value can be selected to get

the best augmentation for a given image.

Challenges

Despite the various intricacies of neural network models used for image

classification, the reviewed approaches exhibit many similarities and display

comparable performance (Table 3). Most notably, multiple models produced similar

accuracy rates irrespective of the size of the dataset experienced. For example, Ge et al.
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(2017, p. 257) presented a VGG-16 network trained on a dataset of 26,584 images using

a Novel classification algorithm that realised a 97% accuracy rate. On the other hand,

a hybrid recurrent-convolutional neural network running a SoftMax algorithm

achieved 98% with just 1,275 data points (Attia et al., 2017, p. 294). Consequently, the

findings of this meta-analysis somewhat counterintuitively indicate a weak

correlation between dataset size and predictive ability (Figure 8). This raises some

interesting questions regarding the apparent dominance of convolutional neural

networks, and suggests that further investigation into hybrid models is warranted.

Similarly, the observation that the SoftMax algorithm, which is commonly

implemented in convolutional networks, returned the most disparate results—72% to

98% accuracy—suggests that the performance of these models are multifactorial, with

a nexus of variables contributing to the results. As such, careful consideration should

be given to the design and implementation of neural networks. For instance, rather

than adjusting multiple variables at once, single, deliberate tuning of one

hyperparameter or topological component at a time enables more reliable inferences

to be drawn. To demonstrate, Ozkan and Koklu (2017, p. 287) trained multiple models

on the PH2 dataset while holding the hyperparameters shown in Table 5 constant, and

manipulating just the number of neurons in the hidden layer to identify which

number produced the best result. Accordingly, it was established that 18 hidden layer

neurons were optimal, with an accuracy rate of 92.5%.

Adegun and Viriri (2020, p. 7161) explain that, due to their visual complexity (e.g.,

irregular demarcations, inhomogeneous features), the accurate diagnosis of skin

lesions is an inherently challenging task. This is further compounded by the similarity

between benign and malignant naevi, which confounds both clinician and intelligent

system alike (Ge et al., 2017, p. 250). Given the present era of Big Data, however, and

increasingly inexpensive computational power, future research is promising.

Nonetheless, as greater dependency on machine learning to solve complex problems

continues to grow, Yap et al. (2018, p. 1266) argue that efforts to mitigate biases should

feature prominently in future work. This is particularly important in problem

domains that impact the health sector with both personal and public ramifications.

M. Jamsek, J. Soto-Kitcher, & J. Knox 16



CSG2341: Intelligent Systems Proposal Report

Figure 8

Dataset vs Accuracy

Note. Scatter plot of seven cited studies illustrates a weak correlation between dataset size and
performance.

Table 5

Backpropogation Training Parameters

Parameter Value

Learning Rate 0.01
Momentum Constant 0.9

Epochs 1000–10000
Performance Function Cross-entropy

Minimum Performance Gradient 1/(e−10)

Note. From ‘Skin Lesion Classification using Machine Learning Algorithms’ by I. A. Ozkan and
M. Koklu, 2017, International Journal of Intelligent Systems and Applications in Engineering, 5(4),
287. (https://doi.org/10.18201/ijisae.2017534420). Copyright 2017 by Advanced Technology
& Science.

Conclusion

In this work, we acknowledge the severity of skin cancer among the Australian

demographic, and propose convolutional neural networks as a supervised machine

learning solution for enhanced dermoscopic diagnosis of cutaneous neoplasms.
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Specifically, trained models offer more robust image classification that enable more

accurate diagnosis, and the potential for higher rates of more accessible screening. As

a result, several popular convolutional neural networks that performed binary and

multiclass classification were compared and several important observations were

made. As noted, multiple architectures of various topologies, dataset size

notwithstanding, obtained comparable results. This provides an explanation for why

no dominant architecture exists. On the other hand, our findings indicate a preference

for SoftMax and Support Vector Machine algorithms in both binary and multiclass

classification, which were prevalent across all architectures with accuracy rates

consistently above 90%. Closer analysis of the AlexNet architecture revealed that the

best results were achieved with a minimal weight decay of 0.0005, a relatively high

momentum of 0.9, and an adaptive learning rate initialised to 0.01, which recorded

accuracy rates as high as 94%. Another important observation is that max-pooling

appears to be preferred, as it was invariant in all five approaches studied. Similarly,

smaller filters were also favoured, to which the resultant deeper networks and

improved image classification were attributed. Meanwhile, our review of an on-device

inference app highlighted the potential of mobile devices in delivering more accessible

skin cancer diagnostic tools to a larger demographic. The prospects of which are of

great import: almost instantaneous diagnosis delivered to users in the privacy of their

own home; widespread screening; and private and public healthcare savings. Despite

the numerous benefits, several key limitations exist. First, the visual complexity of

skin lesions foment a reliance on high quality dermoscopic images. Second, the

computation constraints of embedded devices pose engineering challenges that must

be met. Nonetheless, possible improvements also exist; in particular, hybrid

convolutional-recurrent neural networks, despite experiencing a relatively small

dataset, obtained the highest accuracy, which shows considerable promise for future

research. Further, the potential influx of large-scale image aggregation through the

development of skin lesion diagnostic apps for mobile devices would yield great

benefit. In summary, machine learning enhanced skin cancer diagnostics will improve

the accuracy and rate of diagnosis and early detection; the implications of which will

not only reduce healthcare costs, but, more importantly—reduce the mortality rate.
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Research Plan

The working title for our project implementation report is Skin Lesion Classification

using VGG Convolutional Neural Network.

Aims and Objectives

The overarching goal of the project is to design and develop a convolutional

neural network (CNN) to perform binary and/or multiclass image classification of

skin lesions. In addition, we aim to determine what factors optimise network

performance, and, vis-à-vis hyperparameters, identify values that are most conducive

to low error and high accuracy rates. Accordingly, research questions include:

1. Does the size of the dataset influence accuracy?

• optimal training and testing subsets

2. What values for certain configurable hyperparameters deliver the best

performance?

• learning rate

• momentum constant

• epochs

• stride

• depth

• padding

3. What topology delivers the best performance?

• number of layers • size of each layer

4. Which pooling type delivers the best performance?

• average pooling • max pooling

Further, an important sub-objective of this project is to establish the viability of

bringing machine learning enhanced skin cancer detection technology to mobile

devices.

Methodology

The problem to be solved requires using machine learning to detect malignant

cutaneous neoplasms. As such, a CNN will be implemented and trained to learn to

detect skin cancer from skin lesion images. Successful completion of this project will

require several steps. First, data will need to be collected and allocated to both

M. Jamsek, J. Soto-Kitcher, & J. Knox 19



CSG2341: Intelligent Systems Proposal Report

training and testing subsets. Second, further research of existing skin cancer detection

models using CNNs will be continued to: identify potential architectures; establish

appropriate topologies, hyperparameters, feature extraction protocols, and

classification functions; and determine suitable training and testing percentages for

the given dataset(s). Next, certain performance metrics such as accuracy, sensitivity,

specificity, and dice similarity coefficient will be defined to evaluate the efficiency of

the system (Table 6). Lastly, given these particulars, the network will be designed and

developed; after which training and testing will commence. All results will be

aggregated, and CSV files created to facilitate analysis.

Table 6

Performance Metrics

Metric Description Formula

Accuracy
Measure the proportion of correctly classified
positive and negative results among total test
cases.

TP + TN
TP + TN + FP + FN

Sensitivity
Measure the proportion of correctly classified
positive results among total true positive test
cases.

TP
TP + FN

Specificity
Measure the proportion of correctly classified
negative results among total true negative test
cases.

TN
TN + FP

Dice coefficient

Measure the similarity between the prediction
and ground truth by measuring correctly clas-
sified positive results and penalising for false
positives.

2TP
FP + 2TP + FN

Note. From ‘Deep Learning-Based System for Automatic Melanoma Detection’ by A. A. Adegun
and S. Viriri, 2020, IEEE Access, 8, 7168. (https://doi.org/10.1109/ACCESS.2019.2962812).
Copyright 2020 by IEEE Access.

Implementation

The general procedure to develop this model is illustrated in Figure 9, and

requires utilising Sci-kit Learn and Keras to implement a VGG convolutional neural

network using a SVM and/or SoftMax classifier activation function to experience

either one, or both, of the PH2 or HAM10000 datasets1.

1 PH2 is obtained from https://www.fc.up.pt/addi/ph2%20database.html. HAM10000 is obtained
from https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T.
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Figure 9

Skin lesion classification procedure

Image acquisition

Allocate training
and test subsets

Feature extraction with con-
volutional neural network

Train model with SVM
or SoftMax classifier

Analyse results

The former is a collection of 200 dermoscopic skin lesion images comprised of 40

melanomas, and 80 common and atypical naevi that were obtained from Hospital

Pedro Hispano in Portugal (ADDI Project, 2020). The latter is a much larger collection

of over 10,000 dermoscopic images of common pigmented skin lesions obtained from

various sources (Tschandl, 2018). The Sci-kit Learn module will be imported

(Listing 0.1) to implement the Support Vector Machine (adaptive boost) algorithm

detailed with pseudocode in Listing 0.2.

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from sklearn import datasets, svm

Listing 0.1: Python Sci-kit module with SVM implementation.
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set stdev ← σ, minimum stdev ← σmin, and step stdev ← σstep 1

for i ∈ {1, 2, . . . , n}, do 2

set data weight w← 1
n 2a

while (σ ≥ σmin), do: 3

use radial basis function SVM to train w 3a

set error Ωm← ∑n
i=1 wTyi 3b

if Ωm > 0.5, then: 3c

set σ← σ− σstep

break

set classification weight δm ← 1
2 log(1−Ωi

Ωi
) 3d

set weight vector {wm+1
i } ← wm

i exp{−δmyi Hm(xi)}
Bi

3e

set H(x)← signum(∑M
m=1 Ωm · Hm(x)) 4

Listing 0.2: SVM Adaptive Boost algorithm: M = combined classifier; Bi = normalisation
constant. From ‘Novel Approaches for Diagnosing Melanoma Skin Lesions Through
Supervised and Deep Learning Algorithms’ by J. Premaladha & K. S. Ravichandran, 2016,
Journal of Medical Systems, 40(4), p.95. (https://doi.org/10.1007/s10916-016-0460-2). Copyright
2019 by Springer.
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